

| Biology 12                                                                          | Name:                                                      |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Nervous System                                                                      | Per: Date:                                                 |  |  |  |
| Action Po                                                                           | tential                                                    |  |  |  |
| NOT                                                                                 | ES                                                         |  |  |  |
| The transmission of an impulse along a single neuron occurs                         | because of ion movement across the <b>axomembrane</b> .    |  |  |  |
| This ion movement causes a small temporary shift in the elec-                       | trical nature of the fibre. The voltage is measured as a   |  |  |  |
| difference in the inside of the axon (in the $\mathbf{axoplasm}$ ) and $\mathbf{t}$ | ne outside of the axon.                                    |  |  |  |
| Resting Potential                                                                   |                                                            |  |  |  |
| When an axon is not conducting an impulse, the ins                                  | de of an axon is compared to                               |  |  |  |
| the outside. This is called the                                                     | The existence of the <b>polarity</b>                       |  |  |  |
| (charge difference) correlates with a difference in io                              | n distribution on either side of the axonal membrane.      |  |  |  |
| Draw a portion of an axon under resting potential. Indicat                          | e the relative concentrations of $Na^+$ and $K^+$ ions.    |  |  |  |
| The unequal distribution of these ions is due to the a                              | ction of the                                               |  |  |  |
| a tl                                                                                | nat actively transports Na <sup>+</sup> and K <sup>+</sup> |  |  |  |
| the axon.                                                                           |                                                            |  |  |  |
| Action Potential                                                                    |                                                            |  |  |  |
| The action potential is a ir                                                        | polarity across an                                         |  |  |  |
| as the nerve impulse occurs, An action potential is a                               | n                                                          |  |  |  |
| If a stimulus causes the axonal membrane to depolar                                 | ize to a certain level, called,                            |  |  |  |
| an action potential occurs. The action potential requ                               | irestypes of gated channel proteins in the                 |  |  |  |
| membrane. One gated channel protein opens to allo                                   | w to pass through the membrane to inside                   |  |  |  |

the cell, and the second channel opens to allow  $\underline{\hspace{1cm}}$  to pass through the membrane to outside the cell.

| When an action potential be       | egins, the gates of             | channels                  | open first, and          | flows     |
|-----------------------------------|---------------------------------|---------------------------|--------------------------|-----------|
| down its concentration grad       | lient into the axon. This is    | called                    |                          | because   |
| the charge inside the axon o      | hanges from                     | to                        | 0                        |           |
| Draw a portion of an axon und     | ler action potential with sodiu | um gates open.            |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
| Potassium Gates Open              |                                 |                           |                          |           |
| Second, the gates of              | cha                             | annels open, and          | flows down it            | S         |
| concentration gradient to o       |                                 |                           |                          |           |
| axon resumes a                    |                                 |                           |                          |           |
| Draw a portion of an axon und     |                                 | ssium aates open.         |                          |           |
| 1 3                               | 1 1                             | a i                       |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
|                                   |                                 |                           |                          |           |
| Conduction of an Action Potential |                                 |                           |                          |           |
| In                                |                                 | -                         |                          |           |
| time. As soon as action pote      | _                               |                           |                          |           |
| , during w                        | nich the                        | gates are unable to       | o open. Therefore, th    | e action  |
| potential cannot move             | and                             | d always moves towards    | s its                    | ·         |
| In                                | axons, the gated ior            | n channels that produce   | an action potential ar   | ·e        |
| concentrated at the               | Si                              | nce ion exchange occur    | s only at the nodes, the | ne action |
| potential travels                 | than nonmyelinated              | l axons. This is called _ |                          |           |
|                                   | , meaning that the a            | ction potential "         | " from node to           | node.     |

Complete the graph below with the terms: depolarization, hyperpolarization, repolarization, resting state, threshold





Summary of the steps of an action potential

| Ι. |  |  |  |
|----|--|--|--|
|    |  |  |  |
| 2. |  |  |  |

| 3. |  |  |  |
|----|--|--|--|

| 4. |  |  |  |
|----|--|--|--|
|    |  |  |  |

