Chapter 9 – The Digestive System

Complete using BC Biology 12, page 262 – 293

9.1 The Digestive Tract

1. Put these functions of the digestive system in order from beginning to end: absorb, digest, eliminate, ingest,

 - First step of digestion:
 - ingest
 - digest
 - absorb

 - Last step of digestion:
 - eliminate

2. Distinguish between mechanical digestion and chemical digestion. Refer to both the process and give an example of a digestive structure that performs that process.

 - Mechanical digestion: the PHYSICAL breakdown of food into smaller pieces (e.g. the teeth chewing up food in the mouth, muscular churning of the stomach)

 - Chemical digestion: the ENZYMATIC breakdown of food by hydrolytic enzymes from polymers to monomers that the body can absorb (e.g. salivary amylase in the mouth, pepsin in the stomach)

3. Complete the diagram with the following terms:

 - A. anus
 - B. esophagus
 - C. gallbladder
 - D. large intestine
 - E. liver
 - F. pancreas
 - G. pharynx
 - H. rectum
 - I. salivary glands
 - J. stomach
 - K. small intestine
 - L. tongue

4. Labels to add to the diagram:

 - M. appendix
 - N. diaphragm
 - O. cardiac sphincter
 - P. pyloric sphincter

 - cardiac sphincter
 - stomach
 - gall bladder
 - pyloric sphincter
 - large intestine
 - appendix
 - rectum
 - diaphragm
 - stomach
 - pancreas
 - small intestine
 - anus
5. Match the above parts to their correct functions below

J ______ referred to by the term “gastric”; begins breakdown of proteins; acidic contents kills most bacteria
C ______ small, pear-shaped muscular sac attached to liver; storage of bile
O ______ relaxation of this muscle allows food to enter stomach, constriction reduces chance of heartburn
F ______ produces sodium bicarbonate (neutralize stomach acid), digestive enzymes, insulin and glucagon
A ______ elimination of solid wastes from the body
L ______ manipulates food to create a soft ball called a “bolus”
D ______ absorption of water, salts and some vitamins
G ______ passageway for both food and air
P ______ regulates the passage of partially digested food from stomach to small intestine
H ______ end of the large intestine; storage of indigestible material
K ______ absorption of nutrients; inner surface has high surface area due to folds called “villi”
B ______ tube allowing passage of food from mouth to stomach
M ______ wormlike projection found at the end of the cecum; thought to have a role in fighting infection
N ______ sheet of muscle that separates the abdominal and thoracic cavities
E ______ largest gland in the body; numerous functions including production of bile and detoxifying blood
I ______ makes food moist for ease of passage; produce a digestive enzyme to begin breakdown of starch

6. **Mouth**: Bound externally by the lips ________ and the cheeks ________. Sensory receptors called tastebuds ________ are located on the tongue ________ which is composed of skeletal ________ muscle. The roof of the mouth separates the nasal cavity ________ from the mouth preventing ingested food from entering that area. The roof has two parts: an anterior hard palate ________ and a posterior soft ________ palate _________. The hard palate consists of several bones ________ but the soft ________ palate is composed of muscles ________ and connective ________ tissue. The soft palate ends in a finger-shaped projection called the uvula ________.

7. Discuss the salivary glands using at least 3 different points.
 - 3 pairs (1 pair above jaw and 2 pairs below)
 - Release digestive enzymes to break down starch (salivary amylase)
 - Moistens food to allow it to easily pass down the esophagus

8. As the pharynx serves as a passageway for both food and air, what process is stopped while swallowing?
 - Breathing

9. Describe the process of swallowing in a minimum of 3 steps.
 - Oral phase: turning food into bolus, using tongue to push it to the back of the mouth
 - Pharyngeal phase: larynx moves up under epiglottis to block the airway
 - Esophageal phase: peristalsis pushes bolus down to the stomach

10. What is an “Adam’s apple”? front of the larynx

11. Define peristalsis: rhythmic muscular contractions that push food along the digestive tract

 What is reverse peristalsis more commonly known as? vomiting
12. When stomach acid comes in contact with the esophagus, the result is called **heartburn** or **acid reflux**. A more serious form of this is **gastroesophageal reflux disease** (GERD) which may lead to more problems such as **ulcers**, **difficulty swallowing**, or even **esophageal cancer**.

13. Fill in the table below regarding an adult stomach

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average length</td>
<td>25 cm</td>
</tr>
<tr>
<td>Diameter</td>
<td>varies</td>
</tr>
<tr>
<td>Maximum volume</td>
<td>4 L</td>
</tr>
<tr>
<td>Chemical contents</td>
<td>gastric juice (HCl, pepsin, mucus)</td>
</tr>
<tr>
<td>pH</td>
<td>2</td>
</tr>
<tr>
<td># of muscle layers</td>
<td>3</td>
</tr>
<tr>
<td>Length of time food spends here</td>
<td>2-6 hours</td>
</tr>
</tbody>
</table>

14. What is the difference between a **bolus** and **chyme**? **Bolus** is chewed up food mixed with saliva in the mouth, **chyme** is created once the bolus is mixed with gastric juices (a soupy liquid).

15. Compare the following organs.

<table>
<thead>
<tr>
<th></th>
<th>Small Intestine</th>
<th>Large Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>2.5 cm</td>
<td>6.5 cm</td>
</tr>
<tr>
<td>Length</td>
<td>6 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Absorbs</td>
<td>nutrients</td>
<td>water</td>
</tr>
</tbody>
</table>

16. What is the name of the beginning section of the small intestine? **duodenum**

What is special about this section? **Ducts from the liver and gallbladder send in bile, ducts from the pancreas send in sodium bicarbonate and digestive enzymes**

17. The inner surface of the small intestine contains fingerlike projections.

On the diagram below, label: artery, lacteal (lymphatic capillary), lymphatic vessel, microvilli, vein, villi
18. Using the terms from the last question, fill in the blanks.
 Glycerol and fatty acids are packaged and enter the **lacteal** __________
 Sugars and amino acids enter the **arteries** __________ and **veins** __________
19. Name the hormones that promote the secretion of various digestive juices.
 gastrin ____________ stimulated after eating a protein rich meal
 secretin ____________ stimulated by acid present in chyme
 cholecystokinin ____________ stimulated by partially digested protein and fat
20. Give the four components of the **large intestine**:
 • cecum ____________
 • colon ____________
 • rectum ____________
 • anal canal ____________
21. Along with the salivary glands, the **pancreas** ____________, **liver** ____________, and **gall bladder** ____________ are considered to be accessory digestive organs. What do you think the term “accessory” means in this context? Food does not pass directly through them but they produce materials necessary for digestion to occur properly.
22. Briefly describe the endocrine and exocrine functions of the pancreas.
 • Endocrine: secretes insulin and glucagon to regulate blood sugar levels
 • Exocrine: pancreatic juice (sodium bicarbonate and enzymes)
23. Draw a diagram to explain the role of insulin and glucagon. See Figure 9.9 on page 272 for guidance.

 pancreas secretes insulin
 liver stores glucose as glycogen
 muscles store glycogen (build protein)
 adipose forms fat
 high blood glucose
 HOMEOSTASIS
 low blood glucose
 liver breaks down glycogen into glucose
 pancreas secretes glucagon
 adipose tissue breaks down fat
24. List seven functions of the liver (there are actually hundreds of known functions!)
 1. **Detoxifies blood by removing and metabolizing poisonous substances**
 2. **Stores iron and vitamins A, D, E, K, and B12**
 3. **Makes many plasma proteins (e.g. fibrinogen) from amino acids**
 4. **Stores glucose as glycogen and breaks down glycogen to glucose (maintains homeostatic blood sugar levels)**
 5. **Produces urea after breaking down amino acids**
 6. **Removes bilirubin, a breakdown product of hemoglobin, from the blood and excretes it in bile, a liver product**
 7. **Helps regulate blood cholesterol level, converting some to bile salts**
Bile is produced by the liver and stored in the gall bladder. The yellowish-green colour is due to the presence of bilirubin derived from the breakdown of hemoglobin. Bile also contains bile salts derived from breakdown of hemoglobin. Bile is responsible for emulsifying fat in the small intestine allowing it to be acted upon by digestive enzymes.

Why can we survive without a gallbladder but not without our liver? Liver is the organ producing the bile (~400-800 mL each day) and the gall bladder only stores it.

The clues describe what is being broken down, the site of action and the optimum pH for the enzyme.

Across

1. Protein to peptides; stomach; acidic pH
2. Starch to maltose; mouth; neutral pH
3. Starch to maltose; small intestine; basic pH
4. Protein to peptides; small intestine; basic pH
5. Maltose to glucose; small intestine; basic pH
6. Nucleotides to base, sugar and phosphate; small intestine; basic pH
7. RNA & DNA to nucleotides; small intestine; basic pH
8. Precursor to pepsin
9. Peptides to amino acids; small intestine; basic pH
10. Fat droplet to glycerol and fatty acids; small intestine; basic pH

Down

1. Protein to peptides; stomach; acidic pH
2. Starch to maltose; mouth; neutral pH
4. Protein to peptides; small intestine; basic pH
5. Maltose to glucose; small intestine; basic pH
6. Nucleotides to base, sugar and phosphate; small intestine; basic pH
8. Precursor to pepsin

What is the role of each of the following in digestion?

- sodium bicarbonate: neutralizes the stomach acid, provide a basic pH for the enzymes in the small intestine
- hydrochloric acid: helps turn pepsinogen into pepsin in the stomach, provides the acidic pH required for pepsin to work, kills pathogens entering the stomach
- mucus: protects the lining of the digestive tract from being damaged by enzymes or acid, provides smooth passage of food
- water: required for hydrolysis to occur (breakdown of polymers to monomers)
29. These are scattered through the previous sections. Match the term with the description.

A. cleft palate \textbf{C} swelling of the salivary glands caused by a viral infection
B. tonsillitis \textbf{A} bones of hard palate are not fused together, leaving a gap (1 in 700 newborns)
C. mumps \textbf{D} inflammation of lining of abdominal cavity
D. peritonitis \textbf{B} inflammation of the lymphatic glands found at the back of the mouth

30. Complete the table. Your knowledge of the disorders will not be tested but rather is provided for interest.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestive Tract</td>
<td></td>
</tr>
<tr>
<td>Stomach ulcers</td>
<td>Damage of stomach wall by hydrochloric acid due to the protective layer of mucus lining stomach being broken down. What are the possible causes?</td>
</tr>
<tr>
<td></td>
<td>• bacteria (\textit{Helicobacter pylori}) \textbf{ (most common)} \textbf{ }}</td>
</tr>
<tr>
<td></td>
<td>• viral infections</td>
</tr>
<tr>
<td></td>
<td>• overuse of anti-inflammatory medications</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Loose, watery feces caused by inability of large intestine to absorb sufficient amounts of water. Can lead to dehydration and disturbances in the heart.</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>Chronic diarrhea. Genetic predisposition is a factor, as are several environmental factors.</td>
</tr>
<tr>
<td>Constipation</td>
<td>Feces are hard and dry.</td>
</tr>
<tr>
<td>Hemorrhoids</td>
<td>Chronic constipation can lead to this.</td>
</tr>
<tr>
<td>Polyps</td>
<td>Small growths arising from epithelial lining. Can be benign (harmless) or cancerous.</td>
</tr>
<tr>
<td>Accessory Organs</td>
<td></td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>Inflammation of pancreas. Can be caused by excessive alcohol consumption, gallstones, or other unknown factors.</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>Almost always fatal (20% survival one year after diagnosis)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>In 2009, 2.4 million Canadians had this condition. Distinguish between type 1 and type 2. Which is more common?</td>
</tr>
<tr>
<td></td>
<td>Type 1 – do not produce enough insulin</td>
</tr>
<tr>
<td></td>
<td>Type 2 – cannot properly use the insulin they do produce (more common)</td>
</tr>
<tr>
<td>Jaundice</td>
<td>Yellowish colouring in whites of eyes as well as in skin. What is it caused by? Buildup of bilirubin (product of hemoglobin breakdown), normally broken down by the liver</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Inflammation of the liver, most commonly caused by viruses</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>Chronic disease often seen in alcoholics. Preferred treatment is a liver transfer but supply is insufficient to meet the demand for them!</td>
</tr>
<tr>
<td>Gallstones</td>
<td>Crystals form in the gallbladder and may block the common bile duct. Particularly common in people who have lost a lot of weight in a short period of time or have undergone gastric bypass procedure</td>
</tr>
</tbody>
</table>
45. Match the descriptions to the part.

a. 3
 f. 2
 k. 9
 p. 6
b. 5
 g. 2
 l. 4
 q. 8
c. 7
 h. 1
 m. 7
 r. 2
d. 7
 i. 7
 n. 9
 s. 9
e. 4
 j. 10
 o. 1
 t. 1

49. Protected by a layer of mucus

50. (key wrong) muscles help mechanical breakdown, rugae help the stomach to expand,

52. Both have enzymes to breakdown proteins

53. Mouth begins (salivary amylase), small intestine (pancreatic amylase)

56. Stomach acid would wreck the small intestine, enzymes would denature

65. Diagram of control of blood glucose level

a. 3
 e. 5

b. 8
 f. 1

c. 6
 g. 2

d. 7
 h. 4

68. (X) maltase (Y) peptidases (Z) lipase

69. (X – Z) basic

Mark the review questions using the answer key on pages 541 - 543