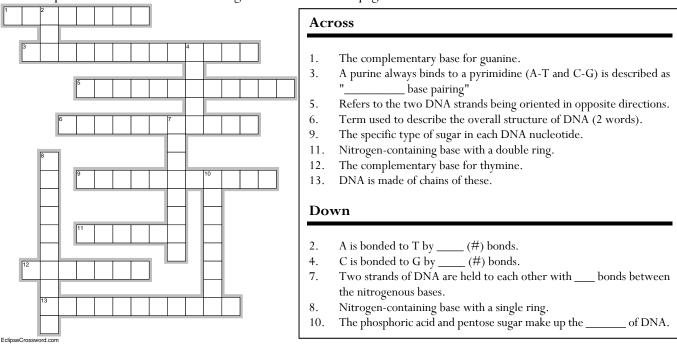
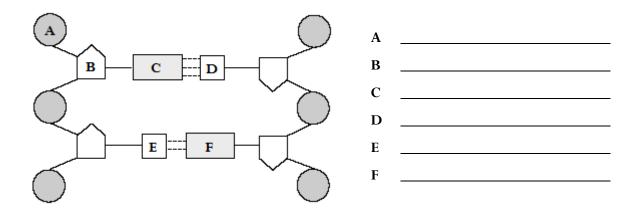
Biology 12

Cell Biology

Name: _____


Per: _____ Date: _____

Chapter 4 – DNA Structure & Gene Expression


Complete using BC Biology 12, pages 108 - 153

4.1	DNA Structure	pages 112 -	114
1.	DNA stands for genetic material of life.	_ and is the	
2.	Researchers knew that the genetic material must be		
	(1) able to ^(a) that pertains to the		^(b) ,
	^(c) , and ^(d) activity.		
	(2) ^(e) so that it can be replicated with	(f)	
	during		rom
	generation to generation.		
The	e Nature of the Genetic Material		
	Contrast the <i>phenotype</i> versus <i>genotype</i> of an organism.		
4	How are DNA protoing, chromosomos and gapos all associated?		
4.	How are DNA, proteins, chromosomes and genes all associated?		
5.	By the 1940s, there was scientific debate whether DNA or proteins were the genetic material of	of the cell. W	hile
	DNA was proven to be the genetic material, summarize the evidence that supported proteins in	nstead of DN	A.
			4)
6.	An experiment by		(b)
	in the early 1950s helped to firmly establish DNA as the genetic material of the cell.		
Str	ucture of DNA		
7.	(a) and(b)) determined	l the
	structure of DNA in the early 1950s.		
	I HEAR THEY SHARE		
	96% OF OUR DN		
	A A A A A A A A A A A A A A A A A A A		
4			~
(글루일::	
0		1 IN	7
		- Plyles	8

8. Complete the crossword below using the terms found on page 114.

9. Use Figure 4.3 to label the diagram below.

10. In the above molecule, on one sugar molecule on each strand label the carbons as 1', 2', 3', 4' and 5'.

a) Label each of the ends of the strands as 3' or 5'

11. Fill in the complementary strand of DNA

G	С	Т	А	Т	А	Т	С	Т	G	Т	С	Т	Α	Т	А	G	С	Т	С
-	~						-		-		-					-	-		-

4.2 DNA Replication		page 116
12. When the body	(a) or	^(b) itself, cells divide. Each new cell requires an
exact copy of the DNA con	tained in the	(c) .
13. Match the terms with the d	escriptions.	
DNA polymerase	A. made in one con	tinuous piece
DNA helicase	B. creates the daugh	nter strands by positioning and joining new nucleotides
DNA ligase	C. connects fragme	nts on lagging strand and seals any breaks in backbone
leading strand	D. term for the sho	rt segments of DNA found on the lagging strand
lagging strand	E. unwinds and unz	ips the double-stranded DNA
Okazaki fragments	F. made of pieces th	nat need to be bound together
14. Explain why DNA replicati	on is said to be semice	onservative
15. Put these steps of DNA rep	lication in order from	n 1 – 3.
6 66	e	by the enzyme DNA ligase.
<u> </u>	een paired bases are b	roken by enzyme DNA helicase.
<u> </u>	as the enzyme DNA	polymerase brings in new nucleotides.
16. Make two identical strands	, in the second s	
TGCTGA	T C G A	T C G A T C A G T C (parent)
		(daughter)
		(daughter)
· · · · · · · · · · · · · · · · · · ·		(parent)
17. Label the diagram below w	ith the terms:	
(A) DNA helicase		(E) nucleotides
(B) lagging		(F) DNA polymerase (x2)
(C) leading		(G) Okazaki fragments
(D) DNA ligase		
3'		
strand		
ł		
RNA primer		
	1	
RNA primase	1 T .	
strand	· _ ·	
5'		

4.3 Gen	e Expression		pages 117 - 123
18. The proc	cess of using a	^(a) to synthesize a	^(b) is
called		(^c).	
19. Gene exp	pression relies on several diffe	rent forms of RNA. Briefly describe them be	elow.
a) a	mRNA:		
b) 1	tRNA:		
c) ·			
C) 1	rRNA:		
20. Give a si		ain processes of gene expression.	
	1	1 0 1	
b) 7	Translation:		
-			
Transcription			
21. What do	bes a "gene" code for?		
22 Transcrip	ntion baging when an anguma	(a) h	inde tightly to a region of the
		^(a) b ^(b) . This enzyme opens up the DNA h	
		DNA replication. Then, RNA polymerase in	1 ,
1 0		^(c) and an	
	strand of mRNA from the DN		
G A	T C G A T C	GATCAGTC	T G C (DNA)
			(mRNA)
24. Describe	e the processing of mRNA that	must occur before it can leave the nucleus.	Ensure you use the terms
primary n	nRNA, mature mRNA, introns and	d exons.	
Translation			
	uence of bases in DNA is trans	scribed into mRNA, which ultimately codes	for a particular sequence of
-		^(b) to form a(^{b)} .	1 1
26. Mathema	atically demonstrate how only	4 mRNA bases are able to code for 20 possi	ible amino acids.
a) l	If 1 base stood for an amino ac	id	
,	If 2 bases stood for an amino a	cid	
,			
,	If 3 bases stood for an amino a	cid a triplet of nucleotides?	

27.	Discuss	why	the	genetic	code is	s said	to b	e degei	nerate
-----	---------	-----	-----	---------	---------	--------	------	---------	--------

 (a)

- 29. Describe the structure of a tRNA molecule.
- 30. On one end of a tRNA is an ______^(a) and on the other end is an _____^(b), a triplet set of three bases complementary to a _____^(c).
- 31. Complete the table below using Figure 4.8 as reference. A table like this will always be provided for quizzes and tests.

Codon (mRNA)	Anticodon (tRNA)	Amino Acid
AUG		
сси		
GAC		
CAG		
UGA		

32. Now try completing this more complex table.

DNA Sequence	Codon (mRNA)	Anticodon (tRNA)	Amino Acid
САТ			
	UGG		
		ACU	
			isoleucine
AAG			

3	^(a) are small structural bodies found in the cytopl	asm and on the endoplasmic
reticulum where translation	n also occurs. Ribosomes are composed of many	^(b) and
several	^(c) . In eukaryotic cells, rRI	NA is produced in the
	^(d) within the nucleus. Then the rRNA jo	oins with proteins manufactured in
and imported from the	(e) to form	^(f) ribosomal subunits, one large
and one small. The subunit	s leave the nucleus and join together in the cytop	blasm to form a ribosome just as
	^(g) begins. A ribosome has a bino	ling site for one^(h)
and three	⁽ⁱ⁾ molecules. These binding sites facilita	te complementary base paring
between tRNA		^(k) . As the ribosome moves
down the mRNA molecule	, new tRNA molecules arrive, and a	(1) forms and
grows longer.		

Translation	Requires Three Steps
35. Step 1:	: brings all the translation components together.
i.	Small ^(a) subunit attaches to the ^(b) in the vicinity
	of the start codon which is the triplet code ^(c) (methionine)
ii.	tRNA start anticodon would therefore be(d)
iii.	Large ribosomal subunit joins to the small subunit.
36. Step 2:	: polypeptide increases in length one amino acid at a time.
i.	^(a) are linked together one at a time through formation of a
	^(b) bond. See Figure 4.13 for a more detailed explanation.
37. Step 3:	: ribosome separates into its two subunits, and the
	^(a) is released
i.	3 possible stop codons =
ii.	Once the polypeptide is set free it begins to take on its shape. The
	ribosome dissociates into its two subunits
Review of C	Gene Expression
38. The	(a) we receive from our parents determine the(a) in our cells
and the	se proteins are responsible for
	ing the Process: create a simplified version of Figure 4.15 on page 123 to display the steps of protein is below.

4.4 Gene Mutations & Cancer

40. A gene mutation is a	
offect on protein activity	a can range from

(a) in the sequence of bases in DNA. The

(b) **.**

effect on protein activity can range from _____

41. Distinguish between a germ-line mutation and a somatic mutation.

Causes of Mutations

42. Three causes: a)

i. Extremely rare: DNA _______ typically only makes one mistake for every _______ nucleotide pairs replicated.

- b) ________, ______, ______, _____, _____, and ______.
- ii. Certain organic chemicals such as ______ and _____", (also known as "_____")
 - i. Specific DNA sequences that have the ability to move within and between chromosomes

Effects of Mutations on Protein Activity

- 43. Define **point mutation**: _____
 - _____ (also known as a **substitution mutation**).
- 44. Define **frameshift mutation**:

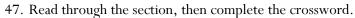
_____ (also known as **insertion** or **deletion mutations**).

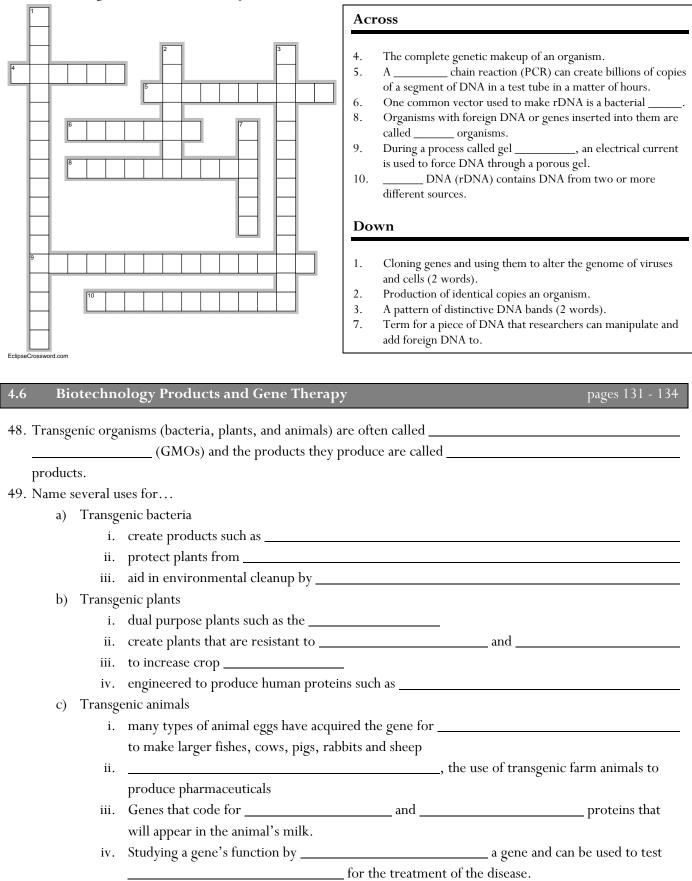
45. Complete the tables below to demonstrate various mutations.

a) Regular protein synthesis: use a codon table to determine the sequence of amino acids

DNA	ААТ	ΤGΑ	АСА	САТ	GCG	ССС
mRNA						
amino acids						

b) Change the fifth base in the original DNA from a G to a C: determine the new sequence of amino acids


DNA			
mRNA			
amino acids			


c) Add a G to the original DNA strand after the third base: determine the new sequence of amino acids

DNA			
mRNA			
amino acids			

46. Based on question #45, which type of mutation is likely more harmful and why?

4.5 DNA Cloning

4.7 Genomics, Proteomics, and Bioinformatics

pages 134 - 137

50. Define **genomics**:

Sequencing the Genome

51. Describe the "Human Genome Project" and its importance, or benefit, to humanity.

Chapter 4 Review Q	uestions			pages 148 - 153
1	10		19	32
2	11		20	34
3	12.		21	36
4	13		22	37
5	14	*	23	38
6	15		24	39
7	16	*	25	42
8	17		26	
9	18	*	27	
	* key is wro	ong for the above que	estions	
43				
44. (a)	(b)	(c)	(d)	(e)
			(i)	

45. Complete the table

	DNA	RNA
Subunit		
Sugar		
Nitrogenous bases		
# of strands		
Base pairings		
Process that produces this nucleic acid		

46.				_	
				_	
50.	(a)		(b)		
	(c)		(d)		
51.					
55.					
	()				
	()				
56.					
F 0					
58.					
59.					
60.					
61					
65.	Complete the table				
	DNA	CCA	ATC	TCA	CTT

	DNA	GCA	ATG	TCA	GTT
	mRNA				
	tRNA				
А	mino acid				

66. _____

 67.

 68.

 69.

Complete the table
Species W: amino acids
Species Z: mRNA sequence

Mark the review questions using the answer key on pages 530 - 532