Name:	

Per: ____ Date: ___

Chapter 5 – Metabolism: Energy and Enzymes

Complete using BC Biology 12, pages 154 - 175

5.1	Energy Transformations & Metabolism page 158
1.	Metabolism:
2.	^(a) refers to the breaking down of molecules while ^(b)
	refers to the building up, or synthesis, of molecules.
3.	In a chemical reaction, ^(a) are the substances that participate in a reaction
	(^(b) in the reaction below), while the(c) are the substances that form as
	the result of a reaction ($^{(d)}$ in the reaction below).
	$A + B \rightarrow C + D$
4.	Free energy (ΔG):
5.	Exergonic reactions:
	a. Examples:
6.	Endergonic reactions:
	a. Examples:
л т	
<u>A1</u> 7	ATP is the common (a) When cells require energy they "spend" ATP
	The more (b) the organism the (c) the demand for ATP.
	However, the amount on hand at any one moment is ^(d) because ATP is
	constantly being generated from ^(e) and a molecule of ^(f) .
8.	Place the appropriate letters next to each statement (use Figure 5.1 on page 158 to help)
	En = endergonic $Ex = exergonic$
	a Energy is released as the reaction occurs.
	b Energy is required to make the reaction go.
	c Reaction used by the body for muscle contraction and nerve conduction.
	dATP \rightarrow ADP + (P).
	e. $ADP + (P) \rightarrow ATP$
9.	Label this diagram, using these terms:
	ATP
	ADP
	-P (release of phosphate)
	+P (additional of phosphate)

10. Explain whether an anabolic reaction is more likely to be exergonic or endergonic.

5.2 Enzymes & Metabolic Pathways

11. Metabolic pathway: _____

2. While	e it i	s possible	e to wri	te an				(a) equ	uation fo	or a pathy	wav as if	the begin	nning
		1		^(b) we	nt to the	e end		1		^(c) in	one step	. actually	v manv
specif	fic st	eps occui	r in bet	ween.							1	, ,	,
3. Consi	ider	the follow	wing dia	agram of	'a metab	olic path	way:						
		E_1	0	E ₂		E ₃	,	E4		E ₅		E ₆	
А	١	\rightarrow	В	\rightarrow	С	\rightarrow	D	\rightarrow	Е	\rightarrow	F	\rightarrow	G
a	. A	– F are											
b	. В	– G are											
C	. E	$_1 - E_6$ are	e										
d	l. A	is a				for t	he first e	enzyme a	nd B is t	the produ	uct		
4. Enzy	me												
5. Ener $\overline{7}$. Enzy	mes 1	lower the	e amour	nt of ene	rgy requ	ired for					^(a) to	occur.	
Neve	rthe	less, the a	addition	n of the e	nzyme c	loes not	change t	he				(b) of	the
reacti	ion.	Without	the enz	zyme, the	e reaction	n rate wi	ill be				^(c) . B	y lowerir	ng the
energ	gy of	activation	n, the e	enzyme _					of	the react	tion.		0
8. Draw	,, v and	label a d	liagram	of the er	nergy of	activatio	n using t	he follo	wing ter	ms:			
- e	nerg	y of activ	vation (v	with enz	yme)		1		0				
- e	nerg	y of activ	vation (v	without o	enzyme)								
- e	nerg	y of react	tants		,								
- e	nerg	y of prod	lucts										
- fi	ree e	nergy											
- D	rogr	ess of the	e reactio										
Г			reaction	on									
	- 8		reaction	on									
	- 8		l reaction	on									

L

pages 159 - 164

How Enzymes Function

19. Write the equation used to indicate than an enzyme forms a complex with its substrate (include all labels).

- 20. Label this diagram, using the following terms
 - active site
 - enzyme (twice)
 - enzyme-substrate complex
 - products
 - substrate

- 21. Is the reaction above a synthetic reaction or a degradative reaction? How do you know?
- 22. What is the **induced fit model** and how does it differ from the model cell biologists used previously?

23. If enzymes are so important for chemical reactions, then why is only a small amount of enzyme needed in a cell?

24. Why are enzymes named after their substrate (e.g. maltase speeds breakdown of maltose)?

Factors Affecting Enzymatic Speed

- 25. Complete each statement with the term *increases* or *decreases*.
 - a. Enzyme activity _______ as substrate concentration increases.
 - b. Raising the temperature generally ______ the rate of an enzymatic reaction.
 - c. Boiling an enzyme drastically ______ the rate of the reaction.
 - d. Changing the pH toward the optimum pH for an enzyme ______ the rate of the reaction.
 - e. Introducing a competitive inhibitor ______ the availability of an enzyme for its normal substrate.
 - Due to feedback inhibition, the affinity of the active site for the substrate f.

8. Enzyme inhibition occurs when the substrat	e is unable to bind to the active site of an enzym	e.
There are two types of enzyme inhibitors (no	ot in your textbook, will be completed with teacher)	
a::;		
i. Examples:		
b::		
i. Examples:		
9. Many enzymes require an	^(a) ion or an organic, but	
helper to function properly. The inorganic i	ions are metals such as	
these helpers are called	^(d) . The organic, non-protein molecul	es are called
^(e) and	^(f) are often components o	of these, becoming
part of the coenzyme's molecular structure.		
0. A deficiency of any one of these	^(a) results in a lack of the coen	zyme and therefor
a lack of certain	^(b) . Niacin deficiency results in	n a skin disease
called(c) and	a riboflavin deficiency results in	
.3 Metabolic Rate & the Thyroid and	d Parathyroid Glands	pages 164 - 1
1. The thyroid gland is located in the	and the parathyroid glands are en	nbedded behind tl
thyroid gland.		
2. Explain the difference the two hormones pr	oduced by the thyroid gland.	
a. triiodothyronine (T ₃) :		
b. thyroxine (T ₄) :		
3. Where do we get the iodine necessary to pr	oduce these hormones?	
4. How do the thyroid hormones increase met	abolic rate?	

35. Describe the functional relationship between **calcitonin** and **parathyroid hormone**.

apter 5 Review Q	uestions		pages 172 - 175
1	9	17	25
2	10	18	26
3	11	19	27
4	12	20	28
5	13	21	29
6	14	22	30
7	15	23	
8	16	24	
33.			
34			
35			
37. Think of the pr	ocesses discussed in Chapter 3		

39. Create a graph below.

ſ													
F						 				 			
-						 		 		 			
ŀ										 			
ŀ			 			 		 	_	 			
ŀ			 	 		 	_	 	_	 			
ŀ						 	_		_	 			
-			 			 	_	 	_	 			
ŀ						 		 	_	 			
ŀ													
	 				-								
	 			 	•								

Mark the review questions using the answer key on pages 533 - 534